Physics

How quantum materials may soon make Star Trek technology reality

If you think technologies from Star Trek seem far-fetched, think again. Many of the devices from the acclaimed television series are slowly becoming a reality. While we may not be teleporting people from starships to a planet’s surface anytime soon, we are getting closer to developing other tools essential for future space travel endeavours.

How the rainbow illuminates the enduring mystery of physics

This summer I went on a family holiday to Cornwall, on the Helford River. The peninsula south of the river is, rather wonderfully, called The Lizard. Standing on its cliffs, you are at the southernmost point of mainland Britain. North of the river is the port of Falmouth, from where packet-ships kept the mail services of the British Empire running until 1851.

The source of up to half of the Earth’s internal heat is completely unknown – here’s how to hunt for it

It may not be obvious while lying in the sun on a hot summer’s day, but a considerable amount of heat is also coming from below you – emanating from deep within the Earth. This heat is equivalent to more than three times the total power consumption of the entire world and drives important geological processes, such as the movement of tectonic plates and the flow of magma near the surface of the Earth. But despite this, where exactly up to half of this heat actually comes from is a mystery.

Learning new tricks from sea sponges, nature’s most unlikely civil engineers

Imagine a future in which buildings tower miles over the streets below, tourists take day trips to the edge of our atmosphere, and multiple space stations can be spotted drifting across the night sky. To make this sci-fi vision a reality, we will need to create new kinds of structures that are lightweight but still strong and tough.

How fast is mach one?

Within the realm of physics, there are certain barriers that human beings have come to recognize. The most well-known is the speed of light, the maximum speed at which all conventional matter and all forms of information in the Universe can travel. This is a barrier that humanity may never be able to push past, mainly because doing so violate one of the most fundamental laws of physics – Einstein’s Theory of General Relativity.

How would engineers build the Golden Gate Bridge today?

When the Golden Gate Bridge went up, it was the longest suspended bridge span in the world – cables hold up the roadway between two towers, with no intermediate supports. And the setting had a number of inherent challenges. It cost about US$37 million at the time; building the same structure today would cost about a billion dollars. So how has the design held up over the past 80 years – and would we do things differently if we were starting from scratch today?

Here’s how Doctor Who’s time machine measures up with real instruments of space and time

There’s no denying that we’ve seen some absolutely staggering accomplishments in physics in the past year or so, particularly in our ability to measure space and time with unprecedented levels of detail. But being a lifelong “Whovian” excited about Doctor Who returning to our screens once again, I wondered how these accomplishments stacked up to those of the fictional Time Lords.

Explainer: what is wave-particle duality

Our notion of reality is built on everyday experiences. But wave-particle duality is so strange that we are forced to re-examine our common conceptions. Wave-particle duality refers to the fundamental property of matter where, at one moment it appears like a wave, and yet at another moment it acts like a particle. To understand wave-particle duality it’s worth looking at differences between particles and waves.

If atoms are mostly empty space, why do objects look and feel solid?

Chemist John Dalton proposed the theory that all matter and objects are made up of particles called atoms, and this is still accepted by the scientific community, almost two centuries later. Each of these atoms is each made up of an incredibly small nucleus and even smaller electrons, which move around at quite a distance from the centre.

What Are Leptons?

What Are Leptons?

During the 19th and 20th centuries, physicists began to probe deep into the nature of matter and energy. In so doing, they quickly realized that the rules which govern them become increasingly blurry the deeper one goes. Whereas the predominant theory used to be that all matter was made up of indivisible atoms, scientists began to realize that atoms are themselves composed of even smaller particles.

How Strong Is The Force Of Gravity On Earth?

Gravity is a pretty awesome fundamental force. If it wasn’t for the Earth’s comfortable 1 g, which causes objects to fall towards the Earth at a speed of 9.8 m/s², we’d all float off into space. And without it, all us terrestrial species would slowly wither and die as our muscles degenerated, our bones became brittle and weak, and our organs ceased to function properly.

What Is A Magnetic Field?

What Is A Magnetic Field?

Everyone knows just how fun magnets can be. As a child, who among us didn’t love to see if we could make our silverware stick together? And how about those little magnetic rocks that we could arrange to form just about any shape because they stuck together? Well, magnetism is not just an endless source of fun or good for scientific experiments; it’s also one of basic physical laws upon which the universe is based.

What exactly does ‘instantaneous’ mean?

What exactly does ‘instantaneous’ mean?

How short is an “instant”? Is it a second? A tenth of a second? A microsecond? You might think all of these qualify. What about 100 years? That certainly doesn’t seem like an instant, and to a human being, it isn’t, since we’d be lucky to have a lifespan that long. But to a giant sequoia, say, 100 years is no big deal. And in geological terms it’s practically nothing.